skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hagelstein, Franziska"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The 1S hyperfine splitting in hydrogen is measured to an impressive ppt precision and will soon be measured to ppm precision in muonic hydrogen. The latter measurement will rely on theoretical predictions, which are limited by knowledge of the proton polarizability effect Δpol. Data-driven evaluations of Δpol have long been in significant tension with baryon chiral perturbation theory. Here we present improved results for Δpol driven by new spin structure data, reducing the long-standing tension between theory and experiment and halving the dominating uncertainty in hyperfine splitting calculations. 
    more » « less
    Free, publicly-accessible full text available November 5, 2025
  2. Abstract Radiative corrections are crucial for modern high-precision physics experiments, and are an area of active research in the experimental and theoretical community. Here we provide an overview of the state of the field of radiative corrections with a focus on several topics: lepton–proton scattering, QED corrections in deep-inelastic scattering, and in radiative light-hadron decays. Particular emphasis is placed on the two-photon exchange, believed to be responsible for the proton form-factor discrepancy, and associated Monte-Carlo codes. We encourage the community to continue developing theoretical techniques to treat radiative corrections, and perform experimental tests of these corrections. 
    more » « less